Układ środka masy - pl.LinkFang.org

Układ środka masy


Układ środka masy (pewnego układu ciał) – inercjalny układ odniesienia, w którym środek masy układu ciał pozostaje w spoczynku. W tym układzie odniesienia pęd całkowity układu ciał (wektorowa suma pędów wszystkich elementów układu) wynosi zero.

\({\displaystyle \sum _{i}^{n}{\vec {p}}_{i}=0}\)

Układ ten odgrywa istotną rolę w analizie zderzeń sprężystych ciał, ponieważ w takim układzie najłatwiej jest obliczyć prędkości końcowe ciał. Wygodnie jest stosować go również do analizy kreacji cząstek elementarnych.

Spis treści

Relacja z innymi układami inercjalnymi


Względem dowolnego inercjalnego układu odniesienia położenie środka masy n ciał można wyznaczyć ze wzoru

\({\displaystyle r={\frac {\sum \limits _{k=1}^{n}{r_{k}m_{k}}}{\sum \limits _{k=1}^{n}{m_{k}}}}={\frac {\sum \limits _{k=1}^{n}{r_{k}m_{k}}}{M}}}\)

gdzie

rwektor położenia środka masy układu ciał względem innego układu odniesienia,
rk – wektor położenia k-tego ciała względem tego układu,
m – masa k-tego ciała,
M – masa układu ciał.

Po obliczeniu pochodnej można otrzymać

\({\displaystyle v={\frac {\sum \limits _{k=1}^{n}{v_{k}m_{k}}}{M}}={\frac {\sum \limits _{k=1}^{n}{p_{k}}}{M}}}\)

gdzie

v i vk – prędkości, odpowiednio, całego układu i poszczególnych jego elementów,
pk – pędy poszczególnych elementów układu ciał.

Energia zderzenia w układzie środka masy


W przypadku zderzających się ciał całkowita energia kinetyczna zderzenia osiąga w układzie środka masy najmniejszą wartość. Energię tę nazywamy energią efektywną zderzenia. Różnica pomiędzy energią efektywną a energią kinetyczną w układzie, w którym jedna z cząstek spoczywa jest szczególnie duża dla cząstek relatywistycznych. Na przykład dla oddziaływania proton-proton, gdy jeden z protonów spoczywa a drugi ma energię 200 GeV, efektywna energia oddziaływania wynosi tylko 10 GeV. Dlatego w eksperymentach akceleratorowych bardzo efektywną metodą jest tzw. metoda wiązek przeciwbieżnych. Wówczas układ laboratoryjny jest układem środka masy i suma energii obu wiązek jest energią efektywną.

Kąt rozproszenia


Jeżeli cząstka o masie m1 rozpraszana jest na nieruchomej cząstce o masie m2 i m1 > m2, to cząstka może ulec rozproszeniu o kąt α spełniający warunek –π/2 < α < π/2. Natomiast w układzie środka masy kąt rozproszenia β może być dowolny. Oba kąty wiąże relacja

\({\displaystyle tg\alpha ={\frac {\sin \beta }{{\frac {m_{1}}{m_{2}}}+\cos \beta }}}\)

Zobacz też


Bibliografia











Kategorie: Dynamika | Układy odniesienia




Informacje na dzień: 23.12.2020 06:14:14 CET

Źródło: Wikipedia (Autorzy [Historia])    Licencja: CC-by-sa-3.0

Zmiany: Wszystkie zdjęcia i większość powiązanych z nimi elementów projektu zostały usunięte. Niektóre ikony zostały zastąpione przez FontAwesome-Icons. Niektóre szablony zostały usunięte (np. „Artykuł wymaga rozszerzenia) lub przypisane (np.„ Przypisy ”). Klasy CSS zostały usunięte lub zharmonizowane.
Usunięto linki do Wikipedii, które nie prowadzą do artykułu lub kategorii (takie jak „Redlinki”, „linki do strony edycji”, „linki do portali”). Każde łącze zewnętrzne ma dodatkową ikonę FontAwesome. Oprócz drobnych zmian w projekcie usunięto kontener multimediów, mapy, pola nawigacji, wersje mówione i geomikroformaty.

Proszę zanotować: Ponieważ podana treść jest automatycznie pobierana z Wikipedii w danym momencie, ręczna weryfikacja była i nie jest możliwa. Dlatego LinkFang.org nie gwarantuje dokładności i aktualności pozyskanych treści. Jeśli istnieją informacje, które są obecnie niepoprawne lub mają niedokładny wygląd, prosimy o Skontaktuj się z nami: e-mail.
Zobacz też: Znak firmowy wydawcy & Polityka prywatności.