Przestrzeń (matematyka)


Przestrzeńzbiór „nadrzędny”, który zawiera inne zbiory, rozważane np. w danym dziale analizy matematycznej[1]. Także: synonim pojęcia struktury matematycznej w celu skrócenia wypowiedzi.

Dodatkowe określenie (np. przestrzeń ilorazowa) wskazuje na typ elementów zbioru oraz rodzaj zdefiniowanych na nim relacji i działań. Niektóre przestrzenie (np. Banacha i Hilberta) mogą opierać się na tym samym zbiorze, różniąc się jedynie działaniami.

Przestrzenie matematyczne mogą tworzyć hierarchię, gdzie dany typ przestrzeni posiada, oprócz cech właściwych sobie, także wszystkie cechy typu przestrzeni, z której się wywodzi. Np. wszystkie przestrzenie unitarne (z iloczynem skalarnym) są również unormowanymi przestrzeniami wektorowymi (ale nie odwrotnie – dlatego mamy hierarchię) ponieważ iloczyn skalarny \({\displaystyle \langle x,x\rangle }\) indukuje normę \({\displaystyle \left\|x\right\|}\) wg wzoru:

\({\displaystyle \left\|x\right\|={\sqrt {\langle x,x\rangle }}.}\)

W węższym znaczeniu przestrzeń to, obok punktu, prostej oraz płaszczyzny jedno z podstawowych pojęć pierwotnych geometrii absolutnej i geometrii euklidesowej.

Zobacz też


Zobacz hasło przestrzeńWikisłowniku

Przypisy


Bibliografia











Kategorie: Geometria | Przestrzenie topologiczne | Struktury algebraiczne




Informacje na dzień: 22.02.2021 09:47:24 CET

Źródło: Wikipedia (Autorzy [Historia])    Licencja: CC-BY-SA-3.0

Zmiany: Wszystkie zdjęcia i większość powiązanych z nimi elementów projektu zostały usunięte. Niektóre ikony zostały zastąpione przez FontAwesome-Icons. Niektóre szablony zostały usunięte (np. „Artykuł wymaga rozszerzenia) lub przypisane (np.„ Przypisy ”). Klasy CSS zostały usunięte lub zharmonizowane.
Usunięto linki do Wikipedii, które nie prowadzą do artykułu lub kategorii (takie jak „Redlinki”, „linki do strony edycji”, „linki do portali”). Każde łącze zewnętrzne ma dodatkową ikonę FontAwesome. Oprócz drobnych zmian w projekcie usunięto kontener multimediów, mapy, pola nawigacji, wersje mówione i geomikroformaty.

Proszę zanotować: Ponieważ podana treść jest automatycznie pobierana z Wikipedii w danym momencie, ręczna weryfikacja była i nie jest możliwa. Dlatego LinkFang.org nie gwarantuje dokładności i aktualności pozyskanych treści. Jeśli istnieją informacje, które są obecnie niepoprawne lub mają niedokładny wygląd, prosimy o Skontaktuj się z nami: e-mail.
Zobacz też: Znak firmowy wydawcy & Polityka prywatności.